Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Public Health ; 11: 1085020, 2023.
Article in English | MEDLINE | ID: covidwho-2313721

ABSTRACT

Background: The coronavirus disease (COVID-19) pandemic is slowing down, and countries are discussing whether preventive measures have remained effective or not. This study aimed to investigate a particular property of the trend of COVID-19 that existed and if its variants of concern were cointegrated, determining its possible transformation into an endemic. Methods: Biweekly expected new cases by variants of COVID-19 for 48 countries from 02 May 2020 to 29 August 2022 were acquired from the GISAID database. While the case series was tested for homoscedasticity with the Breusch-Pagan test, seasonal decomposition was used to obtain a trend component of the biweekly global new case series. The percentage change of trend was then tested for zero-mean symmetry with the one-sample Wilcoxon signed rank test and zero-mean stationarity with the augmented Dickey-Fuller test to confirm a random COVID trend globally. Vector error correction models with the same seasonal adjustment were regressed to obtain a variant-cointegrated series for each country. They were tested by the augmented Dickey-Fuller test for stationarity to confirm a constant long-term stochastic intervariant interaction within the country. Results: The trend series of seasonality-adjusted global COVID-19 new cases was found to be heteroscedastic (p = 0.002), while its rate of change was indeterministic (p = 0.052) and stationary (p = 0.024). Seasonal cointegration relationships between expected new case series by variants were found in 37 out of 48 countries (p < 0.05), reflecting a constant long-term stochastic trend in new case numbers contributed from different variants of concern within most countries. Conclusion: Our results indicated that the new case long-term trends were random on a global scale and stable within most countries; therefore, the virus was unlikely to be eliminated but containable. Policymakers are currently in the process of adapting to the transformation of the pandemic into an endemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Research Design
2.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2288745

ABSTRACT

The SARS-CoV-2 pandemic remains an ongoing threat to global health with emerging variants, especially the Omicron variant and its sub-lineages. Although large-scale vaccination worldwide has delivered outstanding achievements for COVID-19 prevention, a declining effectiveness to a different extent in emerging SARS-CoV-2 variants was observed in the vaccinated population. Vaccines eliciting broader spectrum neutralizing antibodies and cellular immune responses are urgently needed and important. To achieve this goal, rational vaccine design, including antigen modeling, screening and combination, vaccine pipelines, and delivery, are keys to developing a next-generation COVID-19 vaccine. In this study, we designed several DNA constructs based on codon-optimized spike coding regions of several SARS-CoV-2 variants and analyzed their cross-reactive antibodies, including neutralizing antibodies, and cellular immune responses against several VOCs in C57BL/6 mice. The results revealed that different SARS-CoV-2 VOCs induced different cross-reactivity; pBeta, a DNA vaccine encoding the spike protein of the Beta variant, elicited broader cross-reactive neutralizing antibodies against other variants including the Omicron variants BA.1 and BA.4/5. This result demonstrates that the spike antigen from the Beta variant potentially serves as one of the antigens for multivalent vaccine design and development against variants of SARS-CoV-2.

3.
Respir Med Res ; 83: 100990, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2276566

ABSTRACT

This multicenter observational study included 171 COVID-19 adult patients hospitalized in the ICUs of nine hospitals in Lombardy (Northern Italy) from December, 1st 2021, to February, 9th 2022. During the study period, the Delta/Omicron variant ratio of cases decreased with a delay of two weeks in ICU patients compared to that in the community; a higher proportion of COVID-19 unvaccinated patients was infected by Delta than by Omicron whereas a higher rate of COVID-19 boosted patients was Omicron-infected. A higher number of comorbidities and a higher comorbidity score in ICU critically COVID-19 inpatients was positively associated with the Omicron infection as well in vaccinated individuals. Although people infected by Omicron have a lower risk of severe disease than those infected by Delta variant, the outcome, including the risk of ICU admission and the need for mechanical ventilation due to infection by Omicron versus Delta, remains uncertain. The continuous monitoring of the circulating SARS-CoV-2 variants remains a milestone to counteract this pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/epidemiology , Inpatients , Intensive Care Units , Italy/epidemiology
4.
Front Immunol ; 14: 1086035, 2023.
Article in English | MEDLINE | ID: covidwho-2252941

ABSTRACT

SARS-CoV-2 variant clades continue to circumvent antibody responses elicited by vaccination or infection. Current parenteral vaccination strategies reduce illness and hospitalization, yet do not significantly protect against infection by the more recent variants. It is thought that mucosal vaccination strategies may better protect against infection by inducing immunity at the sites of infection, blocking viral transmission more effectively, and significantly inhibiting the evolution of new variants of concern (VOCs). In this study, we evaluated the immunogenicity and efficacy of a mucosally-delivered, non-replicating, adenovirus type 5-vectored vaccine that expresses the spike (S) gene of Wuhan (rAd5-S-Wuhan), delta (rAd5-S-delta), or omicron (rAd5-S-omicron) SARS-CoV-2 VOCs. Hamsters were immunized with these vaccines intranasally prior to challenge with omicron or delta variants. Additionally, one group was vaccinated by oral gavage with rAd5-S-Wuhan prior to challenge with the delta variant. Both intranasal and oral administration of rAd5-S-Wuhan generated cross-reactive serum IgG and mucosal IgA to all variant spike and RBD proteins tested. rAd5-S-omicron and rAd5-S-delta additionally elicited cross-reactive antibodies, though rAd5-S-omicron had significantly lower binding antibody levels except against its matched antigens. Two weeks after the final vaccination, hamsters were challenged with a SARS-CoV-2 variant; omicron or delta. Whether matched to the challenge or with rAd5-S-Wuhan, all vaccines protected hamsters from weight loss and lung pathology caused by challenge and significantly reduced viral shedding compared to placebo. Vaccination with rAd5-S-Wuhan provided significant protection, although there was an improved reduction in shedding and disease pathology in groups protected by the matched VOC vaccines. Nevertheless, Wuhan-based vaccination elicited the most cross-reactive antibody responses generally. Overall, heterologous vaccination via mucosal routes may be advantageous for second-generation vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Cricetinae , Humans , SARS-CoV-2 , Mesocricetus , Vaccination , Immunization
5.
Microb Risk Anal ; 23: 100250, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2221172

ABSTRACT

RNA viruses exhibit a great tendency to mutate. Mutations occur in the parts of the genome that encode the spike glycoprotein and less often in the rest of the genome. This is why Gibbs energy of binding changes more than that of biosynthesis. Starting from 2019, the wild type that was labeled Hu-1 has during the last 3 years evolved to produce several dozen new variants, as a consequence of mutations. Mutations cause changes in empirical formulas of new virus strains, which lead to change in thermodynamic properties of biosynthesis and binding. These changes cause changes in the rate of reactions of binding of virus antigen to the host cell receptor and the rate of virus multiplication in the host cell. Changes in thermodynamic and kinetic parameters lead to changes in biological parameters of infectivity and pathogenicity. Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has been evolving towards increase in infectivity and maintaining constant pathogenicity, or for some variants a slight decrease in pathogenicity. In the case of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants pathogenicity is identical as in the Omicron BA.2.75 variant. On the other hand, infectivity of the Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants is greater than those of previous variants. This will most likely result in the phenomenon of asymmetric coinfection, that is circulation of several variants in the population, some being dominant.

6.
Viruses ; 15(1)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200878

ABSTRACT

Alaska is a unique US state because of its large size, geographically disparate population density, and physical distance from the contiguous United States. Here, we describe a pattern of SARS-CoV-2 variant emergence across Alaska reflective of these differences. Using genomic data, we found that in Alaska, the Omicron sublineage BA.2.3 overtook BA.1.1 by the week of 27 February 2022, reaching 48.5% of sequenced cases. On the contrary, in the contiguous United States, BA.1.1 dominated cases for longer, eventually being displaced by BA.2 sublineages other than BA.2.3. BA.2.3 only reached a prevalence of 10.9% in the contiguous United States. Using phylogenetics, we found evidence of potential origins of the two major clades of BA.2.3 in Alaska and with logistic regression estimated how it emerged and spread throughout the state. The combined evidence is suggestive of founder events in Alaska and is reflective of how Alaska's unique dynamics influence the emergence of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Dermatitis , Humans , Alaska/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology
7.
Front Cell Infect Microbiol ; 12: 1031775, 2022.
Article in English | MEDLINE | ID: covidwho-2154701

ABSTRACT

COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Viral Load
8.
J Infect Public Health ; 16(2): 171-181, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2159298

ABSTRACT

BACKGROUND: Studying the genomic evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may help determine outbreak clusters and virus transmission advantages to aid public health efforts during the pandemic. Thus, we tracked the evolution of SARS-CoV-2 by variant epidemiology, breakthrough infection, and patient characteristics as the virus spread during the Delta and Omicron waves. We also conducted phylogenetic analyses to assess modes of transmission. METHODS: Nasopharyngeal samples were collected from a cohort of 900 patients with positive polymerase chain reaction (PCR) test results confirming COVID-19 disease. Samples underwent real-time PCR detection using TaqPath assays. Sequencing was performed with Ion GeneStudio using the Ion AmpliSeq™ SARS-CoV-2 panel. Variant calling was performed with Torrent Suite™ on the Torrent Server. For phylogenetic analyses, the MAFFT tool was used for alignment and the maximum likelihood method with the IQ-TREE tool to build the phylogenetic tree. Data were analyzed using SAS statistical software. Analysis of variance or t tests were used to assess continuous variables, and χ2 tests were used to assess categorical variables. Univariate and multivariate logistic regression analyses were preformed to estimate odds ratios (ORs). RESULTS: The predominant variants in our cohort of 900 patients were non-variants of concern (11.1 %), followed by Alpha (4.1 %), Beta (5.6 %), Delta (21.2 %), and Omicron (58 %). The Delta wave had more male than female cases (112 vs. 78), whereas the Omicron wave had more female than male cases (311 vs. 208). The oldest patients (mean age, 43.4 years) were infected with non-variants of concern; the youngest (mean age, 33.7 years), with Omicron. Younger patients were mostly unvaccinated, whereas elderly patients were mostly vaccinated, a statistically significant difference. The highest risk for breakthrough infection by age was for patients aged 30-39 years (OR = 12.4, CI 95 %: 6.6-23.2), followed by patients aged 40-49 years (OR = 11.2, CI 95 %: 6.1-23.1) and then 20-29 years (OR = 8.2, CI 95 %: 4.4-15.4). Phylogenetic analyses suggested the interaction of multiple cases related to outbreaks for breakthrough infections, healthcare workers, and intensive care unit admission. CONCLUSION: The findings of this study highlighted several major public health ramifications, including the distribution of variants over a wide range of demographic and clinical variables and by vaccination status.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Adult , SARS-CoV-2/genetics , Phylogeny , Saudi Arabia/epidemiology , Tertiary Care Centers , COVID-19/epidemiology , Genomics , Breakthrough Infections
9.
Front Med (Lausanne) ; 9: 955930, 2022.
Article in English | MEDLINE | ID: covidwho-2123424

ABSTRACT

Background: Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods: Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results: The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion: The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.

10.
Front Immunol ; 13: 962079, 2022.
Article in English | MEDLINE | ID: covidwho-2114642

ABSTRACT

Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics
11.
Biomedicines ; 10(10)2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2071222

ABSTRACT

The latest SARS-CoV-2 variant of concern (VOC), Omicron (B.1.1.529), has diversified into more than 300 sublineages. With an expanding number of newly emerging sublineages, the mutation profile is also becoming complicated. There exist mutually exclusive and revertant mutations in different sublineages. Omicron sublineages share some common mutations with previous VOCs (Alpha, Beta, Gamma, and Delta), indicating an evolutionary relationship between these VOCs. A diverse mutation profile at the spike-antibody interface, flexibility of the regions harboring mutations, mutation types, and coexisting mutations suggest that SARS-CoV-2's evolution is far from over.

12.
Viruses ; 14(10)2022 09 24.
Article in English | MEDLINE | ID: covidwho-2043987

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic challenged many national health care systems, with hospitals reaching capacity limits of intensive care units (ICU). Thus, the estimation of acute local burden of ICUs is critical for appropriate management of health care resources. In this work, we applied non-linear mixed effects modeling to develop an epidemiological SARS-CoV-2 infection model for Germany, with its 16 federal states and 400 districts, that describes infections as well as COVID-19 inpatients, ICU patients with and without mechanical ventilation, recoveries, and fatalities during the first two waves of the pandemic until April 2021. Based on model analyses, covariates influencing the relation between infections and outcomes were explored. Non-pharmaceutical interventions imposed by governments were found to have a major impact on the spreading of SARS-CoV-2. Patient age and sex, the spread of variant B.1.1.7, and the testing strategy (number of tests performed weekly, rate of positive tests) affected the severity and outcome of recorded cases and could reduce the observed unexplained variability between the states. Modeling could reasonably link the discrepancies between fine-grained model simulations of the 400 German districts and the reported number of available ICU beds to coarse-grained COVID-19 patient distribution patterns within German regions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Germany/epidemiology , Hospitalization , Pandemics , Male , Female
13.
Front Immunol ; 13: 948431, 2022.
Article in English | MEDLINE | ID: covidwho-2022730

ABSTRACT

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Horses , Humans , Immunization, Passive , Melphalan , Mice , Pandemics , SARS-CoV-2/genetics , gamma-Globulins
14.
Front Immunol ; 13: 867577, 2022.
Article in English | MEDLINE | ID: covidwho-1974654

ABSTRACT

SARS-CoV-2 is still a major burden for global health despite effective vaccines. With the reduction of social distancing measures, infection rates are increasing in children, while data on the pediatric immune response to SARS-CoV-2 infection is still lacking. Although the typical disease course in children has been mild, emerging variants may present new challenges in this age group. Peripheral blood mononuclear cells (PBMC) from 51 convalescent children, 24 seronegative siblings from early 2020, and 51 unexposed controls were stimulated with SARS-CoV-2-derived peptide MegaPools from the ancestral and beta variants. Flow cytometric determination of activation-induced markers and secreted cytokines were used to quantify the CD4+ T cell response. The average time after infection was over 80 days. CD4+ T cell responses were detected in 61% of convalescent children and were markedly reduced in preschool children. Cross-reactive T cells for the SARS-CoV-2 beta variant were identified in 45% of cases after infection with an ancestral SARS-CoV-2 variant. The CD4+ T cell response was accompanied most predominantly by IFN-γ and Granzyme B secretion. An antiviral CD4+ T cell response was present in children after ancestral SARS-CoV-2 infection, which was reduced in the youngest age group. We detected significant cross-reactivity of CD4+ T cell responses to the more recently evolved immune-escaping beta variant. Our findings have epidemiologic relevance for children regarding novel viral variants of concern and vaccination efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Child , Child, Preschool , Humans , Leukocytes, Mononuclear
15.
EBioMedicine ; 82: 104141, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1956124

ABSTRACT

BACKGROUND: In 2021, Delta became the predominant SARS-CoV-2 variant worldwide. While vaccines have effectively prevented COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occurred. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contributed to increased rates of breakthrough infections compared to unvaccinated controls. METHODS: We studied SARS-CoV-2 variant distribution, dynamics, and adaptive selection over time in relation to vaccine status, phylogenetic relatedness of viruses, full genome mutation profiles, and associated clinical and demographic parameters. FINDINGS: We show a steep and near-complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25 (14% in vaccinated, 7% in unvaccinated), its spike mutation S112L, and AY.44 (8% in vaccinated, 2% in unvaccinated) with its nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthrough infections increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. INTERPRETATION: We observed a modest adaptation of Delta genomes in breakthrough infections in New York, suggesting an improved genomic framework to support Delta's epidemic growth in times of waning vaccine protection despite limited impact on vaccine escape. FUNDING: The study was supported by NYU institutional funds. The NYULH Genome Technology Center is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , Genomics , Humans , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics
16.
Microorganisms ; 10(7)2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1917629

ABSTRACT

Here, we report the emergence of the variant lineage B.1.1.523 that contains a set of mutations including 156_158del, E484K and S494P in the spike protein. E484K and S494P are known to significantly reduce SARS-CoV-2 neutralization by convalescent and vaccinated sera and are considered as mutations of concern. Lineage B.1.1.523 presumably originated in the Russian Federation and spread across European countries with the peak of transmission in April-May 2021. The B.1.1.523 lineage has now been reported from 31 countries. In this article, we analyze the possible origin of this mutation subset and its immune response using in silico methods.

17.
Ann Med Surg (Lond) ; 78: 103737, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821120

ABSTRACT

Despite many nations' best efforts to contain the so-called COVID-19 pandemic, the emergence of the SARS-CoV-2 Omicron strain (B.1.1.529) has been identified as a serious concern. After more than two years of COVID-19 pandemic and more than a year of worldwide vaccination efforts, the globe will not be free of COVID-19 variants such as Delta and Omicron variants. According to current statistics, the Omicron variant has more than 30 mutations when contrasted to other VOCs such as Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). High numbers of changes, particularly in the spike protein (S-Protein), raise worries about the virus's capacity to resist pre-existing immunity acquired by vaccination or spontaneous infection and antibody-based therapy. The Omicron variant raised international concerns, resuming travel bans and coming up with many questions about its severity, transmissibility, testing, detection, and vaccines efficiency against it. Additionally, inadequate health care infrastructures and many immunocompromised individuals increase the infection susceptibility. The current status of low vaccination rates will play a significant role in omicron spreading and create a fertile ground for producing new variants. As a result, this article emphasizes the mutational changes and their consequences. In addition, the potential preventing measures have been examined in detail.

18.
Indian J Pediatr ; 89(5): 490-496, 2022 05.
Article in English | MEDLINE | ID: covidwho-1782955

ABSTRACT

COVID-19 has been reported to have caused more than 286 million cases and 5.4 million deaths till date. COVID variants have appeared at regular intervals-alpha, beta, gamma, delta and now omicron. 'Omicron' is driving the current surge of cases in most countries including India and is poised to replace 'delta' the world over. This variant with more than 50 mutations is phylogenetically very different from other variants. The omicron variant spreads rapidly with an average doubling time of two days. The disease so far has been mild as compared with delta. Though previous infection and vaccination offer little or no protection against infection with omicron, they do seem to partially protect against hospitalization and severe disease. Booster vaccinations have not made any notable impact on the spread of omicron and have further worsened global vaccine equity. The indirect consequences of omicron from lockdowns, restrictions, travel bans, economic losses, health care worker infections and overwhelming of health care facilities are likely to be enormous. The direct effects of omicron on children are expected to be mild like with the previous variants. However, the indirect effects on child mental, physical, and social health may be considerable owing to school closures, missed vaccinations, neglect of other diseases, etc. It is, therefore, imperative that governments take rational decisions to navigate the world through this latest crisis.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Communicable Disease Control , Humans , Immunization, Secondary , SARS-CoV-2
19.
Int J Mol Sci ; 23(8)2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1785747

ABSTRACT

Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Jpn J Infect Dis ; 75(1): 96-101, 2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1637698

ABSTRACT

Various variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began emerging worldwide from the end of 2020 to the beginning of 2021. The variants GRY/VOC202012/01 (B1.1.7), GH/N501Y.V2 (B1.351), and GR/N501Y.V3 (P1) are characterized by N to Y amino acid substitution at position 501 in the S protein. The variant containing L to R substitution at position 452 in the S protein G/L452R.V3 (B1.617) was endemic to India. The heightened concern regarding these variants is related to their increased viral infectivity. Information about nucleotide mismatch(es) on the primer/probe sequence is important for maintaining good performance of real-time PCR assays. In this study, real-time RT-PCR assays developed by the National Institute of Infectious Diseases, Japan (NIID-N2 and NIID-S2 assays), were reviewed to analyze nucleotide mismatches of variants in primer/probe sequences. The frequency of mismatched sequences in three variants (GRY/VOC202012/01, GH/N501Y.V2, and GR/N501Y.V3) was lower than that in all SARS-CoV-2 sequences. The mismatch, that G to C substitution at nucleotide 8 in reverse primer of S2 set, elevated to about 16.3% in G/L452R.V3, however the substitution did not affect the analytical sensitivity of assay. Therefore, the study indicates that the NIID-N2 and NIID-S2 sets detect VOCs of SARS-CoV-2 with reliable efficiency.


Subject(s)
COVID-19 , Communicable Diseases , Humans , Japan , Mutation , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL